3. AI AND MACHINE LEARNING VTU LAB | READ NOW

MACHINE LEARNING VTU LAB

Program -3] WRITE A PROGRAM TO DEMONSTRATE THE WORKING OF THE DECISION TREE BASED ID3 ALGORITHM. USE AN APPROPRIATE DATA SET FOR BUILDING THE DECISION TREE AND APPLY THIS KNOWLEDGE TO CLASSIFY A NEW SAMPLE.


Program Code- lab3.py

import numpy as np
import math
import csv

def read_data(filename):
    with open(filename, 'r') as csvfile:
        datareader = csv.reader(csvfile, delimiter=',')
        headers = next(datareader)
        metadata = []
        traindata = []
        for name in headers:
            metadata.append(name)
        for row in datareader:
            traindata.append(row)

    return (metadata, traindata)

class Node:
    def __init__(self, attribute):
        self.attribute = attribute
        self.children = []
        self.answer = ""
        
    def __str__(self):
        return self.attribute

def subtables(data, col, delete):
    dict = {}
    items = np.unique(data[:, col])
    count = np.zeros((items.shape[0], 1), dtype=np.int32)    
    
    for x in range(items.shape[0]):
        for y in range(data.shape[0]):
            if data[y, col] == items[x]:
                count[x] += 1
                
    for x in range(items.shape[0]):
        dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32")
        pos = 0
        for y in range(data.shape[0]):
            if data[y, col] == items[x]:
                dict[items[x]][pos] = data[y]
                pos += 1       
        if delete:
            dict[items[x]] = np.delete(dict[items[x]], col, 1)
        
    return items, dict

def entropy(S):
    items = np.unique(S)

    if items.size == 1:
        return 0
    
    counts = np.zeros((items.shape[0], 1))
    sums = 0
    
    for x in range(items.shape[0]):
        counts[x] = sum(S == items[x]) / (S.size * 1.0)

    for count in counts:
        sums += -1 * count * math.log(count, 2)
    return sums

def gain_ratio(data, col):
    items, dict = subtables(data, col, delete=False) 
                
    total_size = data.shape[0]
    entropies = np.zeros((items.shape[0], 1))
    intrinsic = np.zeros((items.shape[0], 1))
    
    for x in range(items.shape[0]):
        ratio = dict[items[x]].shape[0]/(total_size * 1.0)
        entropies[x] = ratio * entropy(dict[items[x]][:, -1])
        intrinsic[x] = ratio * math.log(ratio, 2)
        
    total_entropy = entropy(data[:, -1])
    iv = -1 * sum(intrinsic)
    
    for x in range(entropies.shape[0]):
        total_entropy -= entropies[x]
        
    return total_entropy / iv

def create_node(data, metadata):
    if (np.unique(data[:, -1])).shape[0] == 1:
        node = Node("")
        node.answer = np.unique(data[:, -1])[0]
        return node
        
    gains = np.zeros((data.shape[1] - 1, 1))
    
    for col in range(data.shape[1] - 1):
        gains[col] = gain_ratio(data, col)
        
    split = np.argmax(gains)
    
    node = Node(metadata[split])    
    metadata = np.delete(metadata, split, 0)    
    
    items, dict = subtables(data, split, delete=True)
    
    for x in range(items.shape[0]):
        child = create_node(dict[items[x]], metadata)
        node.children.append((items[x], child))
    
    return node

def empty(size):
    s = ""
    for x in range(size):
        s += "   "
    return s

def print_tree(node, level):
    if node.answer != "":
        print(empty(level), node.answer)
        return
    print(empty(level), node.attribute)
    for value, n in node.children:
        print(empty(level + 1), value)
        print_tree(n, level + 2)

metadata, traindata = read_data("tennisdata.csv")
data = np.array(traindata)
node = create_node(data, metadata)
print_tree(node, 0)

MACHINE LEARNING Program Execution – lab3.ipynb

Jupyter Notebook program execution.

import numpy as np
import math
import csv
def read_data(filename):
    with open(filename, 'r') as csvfile:
        datareader = csv.reader(csvfile, delimiter=',')
        headers = next(datareader)
        metadata = []
        traindata = []
        for name in headers:
            metadata.append(name)
        for row in datareader:
            traindata.append(row)

    return (metadata, traindata)
class Node:
    def __init__(self, attribute):
        self.attribute = attribute
        self.children = []
        self.answer = ""
        
    def __str__(self):
        return self.attribute
def subtables(data, col, delete):
    dict = {}
    items = np.unique(data[:, col])
    count = np.zeros((items.shape[0], 1), dtype=np.int32)    
    
    for x in range(items.shape[0]):
        for y in range(data.shape[0]):
            if data[y, col] == items[x]:
                count[x] += 1
                
    for x in range(items.shape[0]):
        dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32")
        pos = 0
        for y in range(data.shape[0]):
            if data[y, col] == items[x]:
                dict[items[x]][pos] = data[y]
                pos += 1       
        if delete:
            dict[items[x]] = np.delete(dict[items[x]], col, 1)
        
    return items, dict
def entropy(S):
    items = np.unique(S)

    if items.size == 1:
        return 0
    
    counts = np.zeros((items.shape[0], 1))
    sums = 0
    
    for x in range(items.shape[0]):
        counts[x] = sum(S == items[x]) / (S.size * 1.0)

    for count in counts:
        sums += -1 * count * math.log(count, 2)
    return sums
def gain_ratio(data, col):
    items, dict = subtables(data, col, delete=False) 
                
    total_size = data.shape[0]
    entropies = np.zeros((items.shape[0], 1))
    intrinsic = np.zeros((items.shape[0], 1))
    
    for x in range(items.shape[0]):
        ratio = dict[items[x]].shape[0]/(total_size * 1.0)
        entropies[x] = ratio * entropy(dict[items[x]][:, -1])
        intrinsic[x] = ratio * math.log(ratio, 2)
        
    total_entropy = entropy(data[:, -1])
    iv = -1 * sum(intrinsic)
    
    for x in range(entropies.shape[0]):
        total_entropy -= entropies[x]
        
    return total_entropy / iv
def create_node(data, metadata):
    if (np.unique(data[:, -1])).shape[0] == 1:
        node = Node("")
        node.answer = np.unique(data[:, -1])[0]
        return node
        
    gains = np.zeros((data.shape[1] - 1, 1))
    
    for col in range(data.shape[1] - 1):
        gains[col] = gain_ratio(data, col)
        
    split = np.argmax(gains)
    
    node = Node(metadata[split])    
    metadata = np.delete(metadata, split, 0)    
    
    items, dict = subtables(data, split, delete=True)
    
    for x in range(items.shape[0]):
        child = create_node(dict[items[x]], metadata)
        node.children.append((items[x], child))
    
    return node
def empty(size):
    s = ""
    for x in range(size):
        s += "   "
    return s

def print_tree(node, level):
    if node.answer != "":
        print(empty(level), node.answer)
        return
    print(empty(level), node.attribute)
    for value, n in node.children:
        print(empty(level + 1), value)
        print_tree(n, level + 2)
metadata, traindata = read_data("tennisdata.csv")
data = np.array(traindata)
node = create_node(data, metadata)
print_tree(node, 0)

Outlook
Overcast
b’Yes’
Rainy
Windy
b’False’
b’Yes’
b’True’
b’No’
Sunny
Humidity
b’High’
b’No’
b’Normal’
b’Yes’

Alternative – LAB 3 Alt.ipynb

# Import neccessary libaries
import pandas as pd
from sklearn import tree
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.externals.six import StringIO
# Load data from CSV
data = pd.read_csv('tennisdata.csv')
print("The first 5 values of data is \n",data.head())

The first 5 values of data is
Outlook Temperature Humidity Windy PlayTennis
0 Sunny Hot High False No
1 Sunny Hot High True No
2 Overcast Hot High False Yes
3 Rainy Mild High False Yes
4 Rainy Cool Normal False Yes

# Obtain Train data and Train output
X = data.iloc[:,:-1]
print("\nThe first 5 values of Train data is \n",X.head())

The first 5 values of Train data is
Outlook Temperature Humidity Windy
0 Sunny Hot High False
1 Sunny Hot High True
2 Overcast Hot High False
3 Rainy Mild High False
4 Rainy Cool Normal False

y = data.iloc[:,-1]
print("\nThe first 5 values of Train output is \n",y.head())

The first 5 values of Train output is
0 No
1 No
2 Yes
3 Yes
4 Yes
Name: PlayTennis, dtype: object

# Convert them in numbers
le_outlook = LabelEncoder()
X.Outlook =  le_outlook.fit_transform(X.Outlook)

le_Temperature = LabelEncoder()
X.Temperature =  le_Temperature.fit_transform(X.Temperature)

le_Humidity = LabelEncoder()
X.Humidity =  le_Humidity.fit_transform(X.Humidity)

le_Windy = LabelEncoder()
X.Windy =  le_Windy.fit_transform(X.Windy)
print("\nNow the Train data is",X.head())

Now the Train data is Outlook Temperature Humidity Windy
0 2 1 0 0
1 2 1 0 1
2 0 1 0 0
3 1 2 0 0
4 1 0 1 0

le_PlayTennis = LabelEncoder()
y =  le_PlayTennis.fit_transform(y)
print("\nNow the Train data is\n",y)

Now the Train data is
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]

## Train model
classifier = DecisionTreeClassifier()
classifier.fit(X,y)

#""" Lets check model"""
## Function to encode input
def labelEncoderForInput(list1):
    list1[0] =  le_outlook.transform([list1[0]])[0]
    list1[1] =  le_Temperature.transform([list1[1]])[0]
    list1[2] =  le_Humidity.transform([list1[2]])[0]
    list1[3] =  le_Windy.transform([list1[3]])[0]
    return [list1]

## predict for an input
inp = ["Rainy","Mild","High","False"]
inp1=["Rainy","Cool","High","False"]
pred1 = labelEncoderForInput(inp1)
y_pred = classifier.predict(pred1)
y_pred

print("\nfor input {0}, we obtain {1}".format(inp1, le_PlayTennis.inverse_transform(y_pred[0])))

for input [1, 0, 0, 0], we obtain Yes

Download the dataset

Leave a Reply

Your email address will not be published. Required fields are marked *

WhatsApp Icon Join For Job Alerts